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Background

@ Ordinal data are widely encountered in many fields, such as
econometrics, business, biomedical and social sciences.
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@ Ordinal responses together with features (covariates) form up an
ordinal regression problem.
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Motivation

@ In ordinal regression problems, flexible inference methods need to
capture the covariate-response relationship, as well as incorporate
the ordinal discrete nature of the responses;

@ The covariate-response relationship is depicted by the probability

response curves;
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Motivation

@ In ordinal regression problems, flexible inference methods need to
capture the covariate-response relationship, as well as incorporate
the ordinal discrete nature of the responses;

@ The covariate-response relationship is depicted by the probability

response curves;

@ Challenges:

m Non-standard response distributions;

m Non-standard regression relationships between the ordinal response
categories and covariates;

m In terms of computation, the proposed method should have tractable

inference algorithm.
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Literature review

@ Discretize latent continuous variable: probit regression;

@ Seeking for more flexibility, semiparametric and nonparametric

models have been developed;

@ To inference the probability, one need to do integral with respect to
the regions defined by the cut-off points;
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Literature review

Discretize latent continuous variable: probit regression;

Seeking for more flexibility, semiparametric and nonparametric
models have been developed;

To inference the probability, one need to do integral with respect to
the regions defined by the cut-off points;

Model discrete distribution directly: logits regression family;

Members including adjacent-categories logits, cumulative logits, and
continuation-ratio logits;

Modeling probability parameters directly, which makes inference

easier.
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Summary of existing literatures

Discretize latent
continuous variable

Model discrete
distribution directly

Parametric
model

Probit regression (Albert & Chib, 1993)

Logits regression family
Continuation-ratio logits models
(Tutz, 1991)

Semiparametric

Relaxing normality assumption

Replacing systematic component with

model (Newton et al., 1996), linearity Gaussian process (Linderman et al.,
assumption (Mukhopadhyay & 2015); Adding random effects term with
Gelfand, 1997), or both (Chib & DP prior to systematic component
Greenberg, 2010) (Tang and Duan, 2012)

Nonparametric Bayesian density estimation forthe ~ Common-atoms DDP model for specific

model joint distribution of covariates and types of problems (Fronczyk and

responses, for categorical variables
(Shahbaba & Neal, 2009; Dunson &
Bhattacharya, 2010), and ordinal

variables (DeYoreo & Kottas, 2018)

Kottas, 2014)
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Objectives

@ Flexible ordinal regression made easy;

@ Flexible: allow general forms for ordinal response distribution, ordinal

regression relationship;

@ Flexible: clear prior specification strategy, efficient posterior inference
algorithm, easy to work with expressions for quantities of interest;
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@ Flexible: allow general forms for ordinal response distribution, ordinal

regression relationship;

@ Flexible: clear prior specification strategy, efficient posterior inference
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@ Study the trade-off between model flexibility and implementation
difficulty, and seek a balance between them;
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@ Flexible ordinal regression made easy;

@ Flexible: allow general forms for ordinal response distribution, ordinal

regression relationship;

@ Flexible: clear prior specification strategy, efficient posterior inference
algorithm, easy to work with expressions for quantities of interest;

@ Study the trade-off between model flexibility and implementation
difficulty, and seek a balance between them;

@ A unified modeling framework that is applicable for different kinds of

ordinal regression problems.
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Proposed Methodology



Extending parametric model to nonparametric model

@ The multinomial distribution has the continuation-ratio logits
representation:

Y ~ Mult(Y|m,my, - ,7c) <
Y ~ Bin(Y1|my,¢(601)) - Bin(Yc_1lmc_1,¢(0c-1)) = K(Y|m, )

B m=mif j=1and mj:m—zf;llykforjzl--- ,C—1;
m 0= (01, ,0c1)and 0, =x"3;
m Denote the expit function as ¢(x)

exp(x) .
1+exp(x) !’
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Extending parametric model to nonparametric model

@ The multinomial distribution has the continuation-ratio logits
representation:

Y ~ Mult(Y|m,mq, -+ ,7¢c) <
Y ~ Bin(Y1|my,¢(601)) - Bin(Yc_1lmc_1,¢(0c-1)) = K(Y|m, )

mmj=mif j=1and mj:m—zf;llykforjzg... NEESIE
m 0= (01, ,0c1)and 0, =x"3;
m Denote the expit function as o(x) = =0

1+-exp(x)

@ Generalize the model via Bayesian nonparametric mixture modeling.
Placing a covariate-dependent nonparametric prior:

Y\GXN/ K(Y|m, 8)dG( sz K(Y|m, 6,(x))
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Model structure illustration

@ The continuation-ratio logits structure offers a sequential mechanism

to allocate the ordinal response Y.
Generate H; ~ Bern(A1), A1 = o(x7 81), 81 ~ N(pq1, Z1)

Yy=1 Generate Ha ~ Bern(Ls), Ay = o(x7 B35), B, ~ N(p15, X2)

o TN

V=8

@ The stick-breaking weights are also determined by it.

|—| I [l ]
I T 1

Az(l*'Al)/ 1(171;2)(171;,)
— | : |

T 1
A‘(I—Ale—‘A,)/ 1(1—A0(1~A2)(1~A,)
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General modeling framework

@ The general logit stick-breaking process (LSBP) model for ordinal
regression:

Y|G, ~ / K(YIm,0)dGy(0), Gx=)_ wi(x)ds,00
(=1
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General modeling framework

@ The general logit stick-breaking process (LSBP) model for ordinal
regression:

Y|G, ~ / K(YIm,0)dGy(0), Gx=)_ wi(x)ds,00
(=1

m The weights we(x) are generated by LSBP: wi(x) = ¢(x"~;) and
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General modeling framework

@ The general logit stick-breaking process (LSBP) model for ordinal
regression:

Y|G ~ / K(Y|m, 0)dG(8), Ge="> wi(x)00,00
£=1
m The weights we(x) are generated by LSBP: wi(x) = ¢(x"~;) and
we(x) = o(T¥) THo (L= o(xT7p)), £ =2,3,- -+
m The atoms, 0¢(x) = {0j¢(x) : j =1,--- , C — 1}, have linear

. d.
regression structure, 0j¢(x) = x” 0 g N(xTuj,xTij), and to be
independent across /;

8/21



General modeling framework

@ The general logit stick-breaking process (LSBP) model for ordinal
regression:

Y|G, ~ / K(YIm,0)dGy(0), Gx=)_ wi(x)ds,00
(=1

m The weights we(x) are generated by LSBP: wi(x) = ¢(x"~;) and
wi(x) = ("7 [T,21 (1 = o(x774)), €= 2,3,

m The atoms, 0¢(x) = {0j¢(x) : j =1,--- , C — 1}, have linear
regression structure, 0j¢(x) = x” 0 g N(xTuj,xTij), and to be
independent across /;

ind.

. iid.
= Hyperprior: , "~ N(7,,l0) and Hylx T~ N(NJ|N0j7zj/“01)r

Zj iﬂ‘ /W(Zj‘l/oj, /\&1)
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Simplified models

o Common-weights: defining the weights through the stick-breaking
process that defines DP, we obtain the linear DDP model;
B Go=)07 wede, ()
m oy K Beta(1,), w1 = m and we = 1¢ [1o1 (1 — me), for

=23,
m 0,(x) are defined as in the general model;
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Simplified models

o Common-weights: defining the weights through the stick-breaking
process that defines DP, we obtain the linear DDP model;

m G = Zz’il Wb, (x);
m . "~ Beta(1,a), wi = and we = ne [T;21 (1 = ne), for

=23,
m 0,(x) are defined as in the general model;

@ Common-atoms: we formulate the common-atoms LSBP model;

m Go=) ;2 we(x)de,;
ind.

w Oelpj, 0f "~ N(w, 07);

m we(x) are determined as in the general model.
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Flexible ordinal regression relationships

Model properties
The general LSBP model allows flexible estimate of the probability
response Curves.

@ Marginal regression relationships:

Pr(Y = j|Gx) Zw ) {p(Bje(x H[l— (Ore(x))]}
@ Conditional regression relationships:
Pr(Y =jlY > j, G, ije ) {e(0)e(x))}

we(x) THZ 1= ¢(Oke(x))]
3521 we(x) THSy [1— (ke ()]

where wj,(x) =

@ Both have a weighted sum form with locally adjustable weights. 10/21



Model implementation

@ Prior specification:
ind.

m Conjugate hyperprior, ~, s N(7vg,To), 11X '~ N(pg;, 2/ ko)),
T W vy, AG).

m "Baseline choice” of hyperparameter: p,; = v, = 0,,
¥ =To=10°l,, and ko = voj = p + 2;

m Under the baseline prior, E(Pr(Y =j|G)) =27/, j=1,---,C -1,
and E(Pr(Y = C|G,)) =271,
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Model implementation

@ Prior specification:

= Conjugate hyperprior, v, "~ N(~o, To), tt;Z; ™ N(po;, /o),
Zj ”E‘ /W(l/oj,/\o_jl).

m "Baseline choice” of hyperparameter: p,; = v, = 0,,
¥ =To=10°l,, and ko = voj = p + 2;

m Under the baseline prior, E(Pr(Y =j|G)) =27/, j=1,---,C -1,
and E(Pr(Y = C|G,)) =271,

o Posterior inference:
m Blocked Gibbs sampler; Truncating Gx at a large enough level L and
introducing latent configuration variable £; for i =1,---  n;
m Pdlya-Gamma augmentation; Introduce two groups of Pdlya-Gamma
latent variables for the weights and atoms;
m Same structure for the weights and atoms; Same sampling strategy;
m All model parameters can be sampled via Gibbs sampling.
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Data Examples




Synthetic data examples

@ In both experiments, n pairs of ordinal response and covariate
(Yi, xi) are generated, where x; i Unif (x;| — 10, 10) such that
with the intercept, the covariate vector is x; = (1,x)7;

o First experiment: We generate n = 100 responses by first sampling
a latent continuous variable y; from normal distribution, then
discretizing y; with cut-off points to get the ordinal response Y;;

e Second experiment:
= We generate data from Y ~ 327 wi(x)K(Y|m, 0x(x));
m The true probability response curves have nonstandard shape.
m Perform the experiment with 200 simulated data and with 800
simulated data.

12/21



First experiment result
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Figure 1: Green solid lines: true response probabilities. Red dashed lines and
shadow area: nonparametric model; Blue dotted lines: probit regression model.
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Second experiment result
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Figure 2: Green solid lines: the true response probabilities; Red line and
shadow area: the general LSBP model; Blue line and shadow area: the linear
DDP model. 14/21
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Box plots for posterior samples of the three largest mixing weights

(order decreases from left to the right) under the general model.
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Real Data Application (Credit Ratings of U.S. Companies)

Standard and Poor’s (S&P) credit ratings for 921 U.S. firms;

For each firm, a credit rating on a seven-point ordinal scale is
available, along with five characteristics;

Combined the first two categories and the last two categories to
produce an ordinal response with five levels;

The covariates are: (1) book leverage X, (2) earnings before
interest and taxes divided by total assets X3, (3) standardized
log-sales X3, (4) retained earnings divided by total assets Xy, (5)
working capital divided by total assets Xs;

Quantities of interest: the first and second order marginal probability
curves Pr(Y = j|Gy;xs) for j=1,--- 5and s € {1,--- | 5}.
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First order marginal probability curves
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Figure 4: First order marginal probability curves. All five ordinal response
curves are displayed in a single panel for each covariate.
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Second order marginal probability surfaces
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Figure 5: Second order marginal probability curves. The corresponding credit
rating decreases from left to right.
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Developmental toxicology data (DYME)

@ Data structure for Segment || designs (exposure after implantation):

m Data at dose levels, x;, i = 1,--- | N, including a control group
(dose= 0);

m n; pregnant laboratory animals (dams) at dose level x;;

m For the j-th dam at dose x;:

@ mj;: number of implants;
@ Rj: number of resorptions and prenatal deaths (Rj; < mj;);
@ y;i: number of live pups with a malformation.

@ Focus on the dose-response curves on the clustered categorical
endpoints, embryolethality Rj;, fetal malformation for live pups yj;,
and combined negative outcomes among implants Rj; + yj;.
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Estimation of dose-response curves
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Figure 6: DYME data. The coordinates of the circle are the dose level and the
proportion of the specific endpoint: non-viable fetuses among implants (left
panel); malformations among live pups (middle panel); combined negative
outcomes among implants (right panel).
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Concluding Remarks




Summary and Discussion

@ We propose a unified toolbox for ordinal regression by directly
modeling the discrete response distribution. The virtues of the
proposed models rely on the following key ingredients:

@ Continuation-ratio logits representation;
@ Pdlya-Gamma data augmentation technique;
© Logit stick-breaking process prior.

@ The principal advantages of the proposed models include their
modularity and extensibility:

@ WModularity: the models can be readily embedded in a more complex
framework;

@ Extensibility: there are numerous possible extensions of the proposed
models. For example, replacing the binomial distribution in the
mixing kernel with logistic-normal-binomial distributions to allow
more overdispersion.
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MANY THANKS!

| am happy to answer any questions.

Jizhou Kang and Athanasios Kottas (2022),
” Structured mixture of continuation-ratio

logits models for ordinal regression”,
submitted, arXiv: 1234.56789.

© Jizhou Kang (jkang37@ucsc.edu)
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