

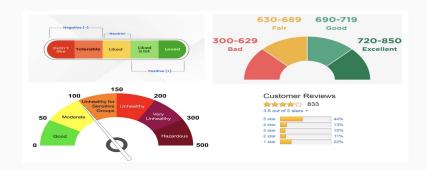
Structured Mixture of Continuation-ratio Logits Models for Ordinal Regression

Jizhou Kang Aug 9th, 2022

Department of Statistics, UC Santa Cruz Joint work with Prof. Athanasios Kottas

Background

• Ordinal data are widely encountered in many fields, such as econometrics, business, biomedical and social sciences.



 Ordinal responses together with features (covariates) form up an ordinal regression problem.

Motivation

- In ordinal regression problems, flexible inference methods need to capture the covariate-response relationship, as well as incorporate the ordinal discrete nature of the responses;
- The covariate-response relationship is depicted by the probability response curves;

Motivation

- In ordinal regression problems, flexible inference methods need to capture the covariate-response relationship, as well as incorporate the ordinal discrete nature of the responses;
- The covariate-response relationship is depicted by the probability response curves;
- Challenges:
 - Non-standard response distributions;
 - Non-standard regression relationships between the ordinal response categories and covariates;
 - In terms of computation, the proposed method should have tractable inference algorithm.

Literature review

- Discretize latent continuous variable: probit regression;
- Seeking for more flexibility, semiparametric and nonparametric models have been developed;
- To inference the probability, one need to do integral with respect to the regions defined by the cut-off points;

Literature review

- Discretize latent continuous variable: probit regression;
- Seeking for more flexibility, semiparametric and nonparametric models have been developed;
- To inference the probability, one need to do integral with respect to the regions defined by the cut-off points;
- Model discrete distribution directly: logits regression family;
- Members including adjacent-categories logits, cumulative logits, and continuation-ratio logits;
- Modeling probability parameters directly, which makes inference easier.

	Discretize latent continuous variable	Model discrete distribution directly
Parametric model	Probit regression (Albert & Chib, 1993)	Logits regression family Continuation-ratio logits models (Tutz, 1991)
Semiparametric model	Relaxing normality assumption (Newton et al., 1996), linearity assumption (Mukhopadhyay & Gelfand, 1997), or both (Chib & Greenberg, 2010)	Replacing systematic component with Gaussian process (Linderman et al., 2015); Adding random effects term with DP prior to systematic component (Tang and Duan, 2012)
Nonparametric model	Bayesian density estimation for the joint distribution of covariates and responses, for categorical variables (Shahbaba & Neal, 2009; Dunson & Bhattacharya, 2010), and ordinal variables (DeYoreo & Kottas, 2018)	Common-atoms DDP model for specific types of problems (Fronczyk and Kottas, 2014)

- Flexible ordinal regression made easy;
 - Flexible: allow general forms for ordinal response distribution, ordinal regression relationship;
 - Flexible: clear prior specification strategy, efficient posterior inference algorithm, easy to work with expressions for quantities of interest;

- Flexible ordinal regression made easy;
 - Flexible: allow general forms for ordinal response distribution, ordinal regression relationship;
 - Flexible: clear prior specification strategy, efficient posterior inference algorithm, easy to work with expressions for quantities of interest;
- Study the trade-off between model flexibility and implementation difficulty, and seek a balance between them;

- Flexible ordinal regression made easy;
 - Flexible: allow general forms for ordinal response distribution, ordinal regression relationship;
 - Flexible: clear prior specification strategy, efficient posterior inference algorithm, easy to work with expressions for quantities of interest;
- Study the trade-off between model flexibility and implementation difficulty, and seek a balance between them;
- A unified modeling framework that is applicable for different kinds of ordinal regression problems.

Proposed Methodology

Extending parametric model to nonparametric model

• The multinomial distribution has the continuation-ratio logits representation:

$$\begin{split} \mathbf{Y} &\sim \textit{Mult}(\mathbf{Y}|m, \pi_1, \cdots, \pi_C) \Longleftrightarrow \\ \mathbf{Y} &\sim \textit{Bin}(Y_1|m_1, \varphi(\theta_1)) \cdots \textit{Bin}(Y_{C-1}|m_{C-1}, \varphi(\theta_{C-1})) = \mathcal{K}(\mathbf{Y}|\mathbf{m}, \boldsymbol{\theta}) \end{split}$$

$$m_j = m \text{ if } j = 1 \text{ and } m_j = m - \sum_{k=1}^{j-1} y_k \text{ for } j = 2, \cdots, C-1;$$

$$\theta = (\theta_1, \cdots, \theta_{C-1}) \text{ and } \theta_j = \mathbf{x}^T \beta_j;$$

Denote the expit function as
$$\varphi(x) = \frac{\exp(x)}{1 + \exp(x)}$$
;

Extending parametric model to nonparametric model

• The multinomial distribution has the continuation-ratio logits representation:

$$\begin{split} \mathbf{Y} &\sim \textit{Mult}(\mathbf{Y}|m, \pi_1, \cdots, \pi_C) \Longleftrightarrow \\ \mathbf{Y} &\sim \textit{Bin}(Y_1|m_1, \varphi(\theta_1)) \cdots \textit{Bin}(Y_{C-1}|m_{C-1}, \varphi(\theta_{C-1})) = \mathcal{K}(\mathbf{Y}|\mathbf{m}, \theta) \end{split}$$

$$m_j = m \text{ if } j = 1 \text{ and } m_j = m - \sum_{k=1}^{j-1} y_k \text{ for } j = 2, \cdots, C-1;$$

$$\theta = (\theta_1, \cdots, \theta_{C-1}) \text{ and } \theta_j = \mathbf{x}^T \beta_j;$$

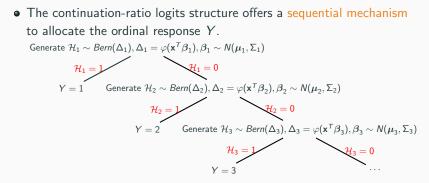
$$p_{j} = (\theta_1, \cdots, \theta_{C-1}) \text{ and } \theta_j = \mathbf{x}^T \beta_j;$$

Denote the expit function as
$$\varphi(x) = \frac{\exp(x)}{1 + \exp(x)}$$
;

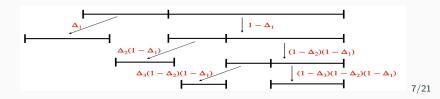
• Generalize the model via Bayesian nonparametric mixture modeling. Placing a covariate-dependent nonparametric prior:

$$\mathbf{Y}|G_{\mathbf{x}} \sim \int K(\mathbf{Y}|\mathbf{m}, \theta) dG_{\mathbf{x}}(\theta) = \sum_{\ell=1}^{\infty} \omega_{\ell}(\mathbf{x}) K(\mathbf{Y}|\mathbf{m}, \theta_{\ell}(\mathbf{x}))$$

Model structure illustration



• The stick-breaking weights are also determined by it.



• The general logit stick-breaking process (LSBP) model for ordinal regression:

$$\mathbf{Y}|G_{\mathbf{x}} \sim \int K(\mathbf{Y}|\mathbf{m}, m{ heta}) dG_{\mathbf{x}}(m{ heta}), \quad G_{\mathbf{x}} = \sum_{\ell=1}^{\infty} \omega_{\ell}(\mathbf{x}) \delta_{m{ heta}_{\ell}(\mathbf{x})}$$

• The general logit stick-breaking process (LSBP) model for ordinal regression:

$$\mathbf{Y}|G_{\mathbf{x}} \sim \int K(\mathbf{Y}|\mathbf{m}, m{ heta}) dG_{\mathbf{x}}(m{ heta}), \quad G_{\mathbf{x}} = \sum_{\ell=1}^{\infty} \omega_{\ell}(\mathbf{x}) \delta_{m{ heta}_{\ell}(\mathbf{x})}$$

• The weights $\omega_{\ell}(\mathbf{x})$ are generated by LSBP: $\omega_1(\mathbf{x}) = \varphi(\mathbf{x}^T \boldsymbol{\gamma}_1)$ and $\omega_{\ell}(\mathbf{x}) = \varphi(\mathbf{x}^T \boldsymbol{\gamma}_{\ell}) \prod_{h=1}^{\ell-1} (1 - \varphi(\mathbf{x}^T \boldsymbol{\gamma}_h)), \ \ell = 2, 3, \cdots;$

• The general logit stick-breaking process (LSBP) model for ordinal regression:

$$\mathbf{Y}|G_{\mathbf{x}} \sim \int K(\mathbf{Y}|\mathbf{m}, m{ heta}) dG_{\mathbf{x}}(m{ heta}), \quad G_{\mathbf{x}} = \sum_{\ell=1}^{\infty} \omega_{\ell}(\mathbf{x}) \delta_{m{ heta}_{\ell}(\mathbf{x})}$$

- The weights $\omega_{\ell}(\mathbf{x})$ are generated by LSBP: $\omega_1(\mathbf{x}) = \varphi(\mathbf{x}^T \gamma_1)$ and $\omega_{\ell}(\mathbf{x}) = \varphi(\mathbf{x}^T \gamma_{\ell}) \prod_{h=1}^{\ell-1} (1 \varphi(\mathbf{x}^T \gamma_h)), \ \ell = 2, 3, \cdots;$
- The atoms, $\theta_{\ell}(\mathbf{x}) = \{\theta_{j\ell}(\mathbf{x}) : j = 1, \cdots, C-1\}$, have linear regression structure, $\theta_{j\ell}(\mathbf{x}) = \mathbf{x}^{T} \beta_{j\ell} \overset{ind.}{\sim} N(\mathbf{x}^{T} \mu_{j}, \mathbf{x}^{T} \Sigma_{j} \mathbf{x})$, and to be independent across ℓ ;

• The general logit stick-breaking process (LSBP) model for ordinal regression:

$$\mathbf{Y}|G_{\mathbf{x}} \sim \int K(\mathbf{Y}|\mathbf{m}, m{ heta}) dG_{\mathbf{x}}(m{ heta}), \quad G_{\mathbf{x}} = \sum_{\ell=1}^{\infty} \omega_{\ell}(\mathbf{x}) \delta_{m{ heta}_{\ell}(\mathbf{x})}$$

- The weights $\omega_{\ell}(\mathbf{x})$ are generated by LSBP: $\omega_1(\mathbf{x}) = \varphi(\mathbf{x}^T \boldsymbol{\gamma}_1)$ and $\omega_{\ell}(\mathbf{x}) = \varphi(\mathbf{x}^T \boldsymbol{\gamma}_{\ell}) \prod_{h=1}^{\ell-1} (1 \varphi(\mathbf{x}^T \boldsymbol{\gamma}_h)), \ \ell = 2, 3, \cdots;$
- The atoms, $\theta_{\ell}(\mathbf{x}) = \{\theta_{j\ell}(\mathbf{x}) : j = 1, \cdots, C-1\}$, have linear regression structure, $\theta_{j\ell}(\mathbf{x}) = \mathbf{x}^{T} \beta_{j\ell} \overset{ind.}{\sim} N(\mathbf{x}^{T} \mu_{j}, \mathbf{x}^{T} \Sigma_{j} \mathbf{x})$, and to be independent across ℓ ;

■ Hyperprior:
$$\gamma_{\ell} \stackrel{i.i.d.}{\sim} N(\gamma_0, \Gamma_0)$$
 and $\mu_j | \Sigma_j \stackrel{ind.}{\sim} N(\mu_j | \mu_{0j}, \Sigma_j / \kappa_{0j}),$
 $\Sigma_j \stackrel{ind.}{\sim} IW(\Sigma_j | \nu_{0j}, \Lambda_{0j}^{-1}).$

• **Common-weights**: defining the weights through the stick-breaking process that defines DP, we obtain the linear DDP model;

•
$$G_{\mathbf{x}} = \sum_{\ell=1}^{\infty} \omega_{\ell} \delta_{\theta_{\ell}(\mathbf{x})};$$

• $\eta_{\ell} \stackrel{i.i.d.}{\sim} Beta(1, \alpha), \ \omega_{1} = \eta_{1} \text{ and } \omega_{\ell} = \eta_{\ell} \prod_{h=1}^{\ell-1} (1 - \eta_{\ell}), \text{ for } \ell = 2, 3, \cdots;$

• $\theta_{\ell}(\mathbf{x})$ are defined as in the general model;

• **Common-weights**: defining the weights through the stick-breaking process that defines DP, we obtain the linear DDP model;

•
$$G_{\mathbf{x}} = \sum_{\ell=1}^{\infty} \omega_{\ell} \delta_{\theta_{\ell}(\mathbf{x})};$$

• $\eta_{\ell} \stackrel{i.i.d.}{\sim} Beta(1, \alpha), \ \omega_{1} = \eta_{1} \text{ and } \omega_{\ell} = \eta_{\ell} \prod_{h=1}^{\ell-1} (1 - \eta_{\ell}), \text{ for } \ell = 2, 3, \cdots;$

• $\theta_{\ell}(\mathbf{x})$ are defined as in the general model;

• Common-atoms: we formulate the common-atoms LSBP model;

•
$$G_{\mathbf{x}} = \sum_{\ell=1}^{\infty} \omega_{\ell}(\mathbf{x}) \delta_{\boldsymbol{\theta}_{\ell}};$$

$$\bullet \ \theta_{j\ell}|\mu_j, \sigma_j^2 \overset{\text{ind.}}{\sim} N(\mu_j, \sigma_j^2);$$

• $\omega_{\ell}(\mathbf{x})$ are determined as in the general model.

Model properties

The general LSBP model allows flexible estimate of the probability response curves.

O Marginal regression relationships:

$$Pr(\mathbf{Y} = j | G_{\mathbf{x}}) = \sum_{\ell=1}^{\infty} \omega_{\ell}(\mathbf{x}) \left\{ \varphi(\theta_{j\ell}(\mathbf{x})) \prod_{k=1}^{j-1} [1 - \varphi(\theta_{k\ell}(\mathbf{x}))] \right\}$$

Onditional regression relationships:

$$Pr(\mathbf{Y} = j | \mathbf{Y} \ge j, G_{\mathbf{x}}) = \sum_{\ell=1}^{\infty} w_{j\ell}(\mathbf{x}) \left\{ \varphi(\theta_{j\ell}(\mathbf{x})) \right\}$$

where $w_{j\ell}(\mathbf{x}) = \frac{\omega_{\ell}(\mathbf{x}) \prod_{k=1}^{j-1} [1 - \varphi(\theta_{k\ell}(\mathbf{x}))]}{\sum_{\ell=1}^{\infty} \omega_{\ell}(\mathbf{x}) \prod_{k=1}^{j-1} [1 - \varphi(\theta_{k\ell}(\mathbf{x}))]}.$

• Both have a weighted sum form with locally adjustable weights.

• Prior specification:

Conjugate hyperprior, $\gamma_{\ell} \stackrel{i.i.d.}{\sim} N(\gamma_0, \Gamma_0), \ \mu_j | \Sigma_j \stackrel{ind.}{\sim} N(\mu_{0j}, \Sigma_j / \kappa_{0j}), \Sigma_j \stackrel{ind.}{\sim} W(\nu_{0j}, \Lambda_{0j}^{-1}).$

Baseline choice" of hyperparameter: $\boldsymbol{\mu}_{0j} = \boldsymbol{\gamma}_0 = \boldsymbol{0}_p$, $\boldsymbol{\Sigma}_j = \boldsymbol{\Gamma}_0 = 10^2 \boldsymbol{I}_p$, and $\kappa_{0j} = \nu_{0j} = p + 2$;

• Under the baseline prior, $E(Pr(\mathbf{Y} = j | G_x)) \equiv 2^{-j}$, $j = 1, \dots, C-1$, and $E(Pr(\mathbf{Y} = C | G_x)) \equiv 2^{-(C-1)}$.

• Prior specification:

Conjugate hyperprior, $\gamma_{\ell} \stackrel{i.i.d.}{\sim} N(\gamma_0, \Gamma_0), \mu_j | \Sigma_j \stackrel{ind.}{\sim} N(\mu_{0j}, \Sigma_j / \kappa_{0j}), \Sigma_j \stackrel{ind.}{\sim} IW(\nu_{0j}, \Lambda_{0j}^{-1}).$

Baseline choice" of hyperparameter: $\mu_{0j} = \gamma_0 = \mathbf{0}_p$, $\Sigma_i = \Gamma_0 = 10^2 \mathbf{I}_p$, and $\kappa_{0i} = \nu_{0i} = p + 2$;

• Under the baseline prior, $E(Pr(\mathbf{Y} = j | G_x)) \equiv 2^{-j}$, $j = 1, \dots, C-1$, and $E(Pr(\mathbf{Y} = C | G_x)) \equiv 2^{-(C-1)}$.

• Posterior inference:

- Blocked Gibbs sampler; Truncating G_x at a large enough level L and introducing latent configuration variable L_i for i = 1, · · · , n;
- Pólya-Gamma augmentation; Introduce two groups of Pólya-Gamma latent variables for the weights and atoms;
- Same structure for the weights and atoms; Same sampling strategy;
- All model parameters can be sampled via Gibbs sampling.

Data Examples

Synthetic data examples

- In both experiments, n pairs of ordinal response and covariate (Y_i, x_i) are generated, where x_i ^{i.i.d.} Unif(x_i| - 10, 10) such that with the intercept, the covariate vector is x_i = (1, x_i)^T;
- First experiment: We generate n = 100 responses by first sampling a latent continuous variable y
 _i from normal distribution, then discretizing y
 _i with cut-off points to get the ordinal response Y_i;

• Second experiment:

- We generate data from $\mathbf{Y} \sim \sum_{k=1}^{3} \omega_k(\mathbf{x}) \mathcal{K}(\mathbf{Y}|\mathbf{m}, \boldsymbol{\theta}_k(\mathbf{x}))$;
- The true probability response curves have nonstandard shape.
- Perform the experiment with 200 simulated data and with 800 simulated data.

First experiment result

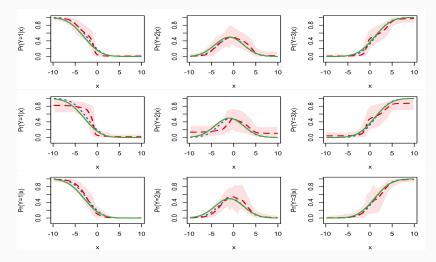


Figure 1: Green solid lines: true response probabilities. Red dashed lines and shadow area: nonparametric model; Blue dotted lines: probit regression model.

Second experiment result

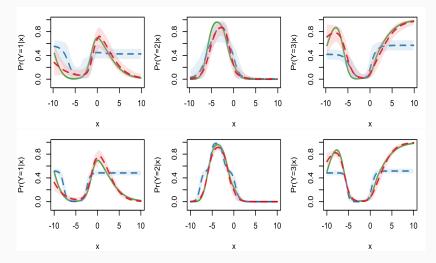


Figure 2: Green solid lines: the true response probabilities; Red line and shadow area: the general LSBP model; Blue line and shadow area: the linear DDP model.

How it works?

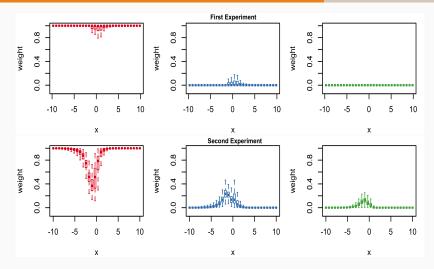


Figure 3: Box plots for posterior samples of the three largest mixing weights (order decreases from left to the right) under the general model.

Real Data Application (Credit Ratings of U.S. Companies)

- Standard and Poor's (S&P) credit ratings for 921 U.S. firms;
- For each firm, a credit rating on a seven-point ordinal scale is available, along with five characteristics;
- Combined the first two categories and the last two categories to produce an ordinal response with five levels;
- The covariates are: (1) book leverage X₁, (2) earnings before interest and taxes divided by total assets X₂, (3) standardized log-sales X₃, (4) retained earnings divided by total assets X₄, (5) working capital divided by total assets X₅;
- Quantities of interest: the first and second order marginal probability curves $Pr(\mathbf{Y} = j | G_{\mathbf{x}}; \mathbf{x}_{\mathbf{s}})$ for $j = 1, \dots, 5$ and $\mathbf{s} \in \{1, \dots, 5\}$.

First order marginal probability curves

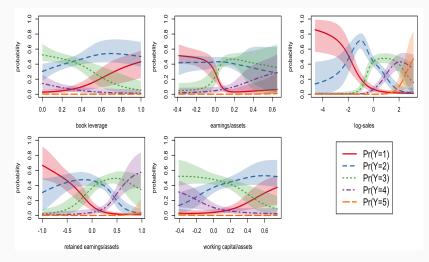


Figure 4: First order marginal probability curves. All five ordinal response curves are displayed in a single panel for each covariate.

Second order marginal probability surfaces

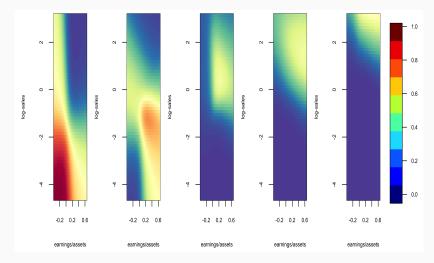


Figure 5: Second order marginal probability curves. The corresponding credit rating decreases from left to right.

- Data structure for Segment II designs (exposure after implantation):
 - Data at dose levels, x_i, i = 1, · · · , N, including a control group (dose= 0);
 - *n_i* pregnant laboratory animals (dams) at dose level *x_i*;
 - For the *j*-th dam at dose *x_i*:
 - *m_{ij}*: number of implants;
 - *R_{ij}*: number of resorptions and prenatal deaths (*R_{ij}* ≤ *m_{ij}*);
 - y_{ij} : number of live pups with a malformation.
- Focus on the dose-response curves on the clustered categorical endpoints, embryolethality R_{ij} , fetal malformation for live pups y_{ij} , and combined negative outcomes among implants $R_{ij} + y_{ij}$.

Estimation of dose-response curves

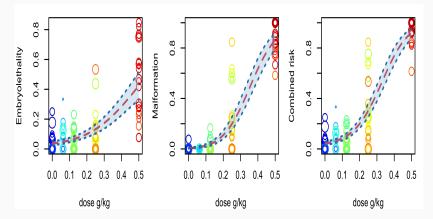


Figure 6: DYME data. The coordinates of the circle are the dose level and the proportion of the specific endpoint: non-viable fetuses among implants (left panel); malformations among live pups (middle panel); combined negative outcomes among implants (right panel).

Concluding Remarks

- We propose a unified toolbox for ordinal regression by directly modeling the discrete response distribution. The virtues of the proposed models rely on the following key ingredients:
 - Continuation-ratio logits representation;
 - Pólya-Gamma data augmentation technique;
 - Optimized Logit stick-breaking process prior.
- The principal advantages of the proposed models include their modularity and extensibility:

 - Modularity: the models can be readily embedded in a more complex framework:
 - Extensibility: there are numerous possible extensions of the proposed models. For example, replacing the binomial distribution in the mixing kernel with logistic-normal-binomial distributions to allow more overdispersion.

MANY THANKS!

I am happy to answer any questions.

Jizhou Kang and Athanasios Kottas (2022), "Structured mixture of continuation-ratio logits models for ordinal regression", submitted, arXiv: 1234.56789.

© Jizhou Kang (jkang37@ucsc.edu)