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Background

Ordinal data are widely encountered in many fields, such as

econometrics, business, biomedical and social sciences.

Ordinal responses together with features (covariates) form up an

ordinal regression problem.
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Motivation

In ordinal regression problems, flexible inference methods need to

capture the covariate-response relationship, as well as incorporate

the ordinal discrete nature of the responses;

The covariate-response relationship is depicted by the probability

response curves;

Challenges:

Non-standard response distributions;

Non-standard regression relationships between the ordinal response

categories and covariates;

In terms of computation, the proposed method should have tractable

inference algorithm.
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Literature review

Discretize latent continuous variable: probit regression;

Seeking for more flexibility, semiparametric and nonparametric

models have been developed;

To inference the probability, one need to do integral with respect to

the regions defined by the cut-off points;

Model discrete distribution directly: logits regression family;

Members including adjacent-categories logits, cumulative logits, and

continuation-ratio logits;

Modeling probability parameters directly, which makes inference

easier.
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Summary of existing literatures
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Objectives

Flexible ordinal regression made easy;

1 Flexible: allow general forms for ordinal response distribution, ordinal

regression relationship;

2 Flexible: clear prior specification strategy, efficient posterior inference

algorithm, easy to work with expressions for quantities of interest;

Study the trade-off between model flexibility and implementation

difficulty, and seek a balance between them;

A unified modeling framework that is applicable for different kinds of

ordinal regression problems.
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Proposed Methodology



Extending parametric model to nonparametric model

The multinomial distribution has the continuation-ratio logits

representation:

Y ∼ Mult(Y|m, π1, · · · , πC )⇐⇒
Y ∼ Bin(Y1|m1, ϕ(θ1)) · · ·Bin(YC−1|mC−1, ϕ(θC−1)) = K (Y|m,θ)

mj = m if j = 1 and mj = m −
∑j−1

k=1 yk for j = 2, · · · ,C − 1;

θ = (θ1, · · · , θC−1) and θj = xTβj ;

Denote the expit function as ϕ(x) = exp(x)
1+exp(x)

;

Generalize the model via Bayesian nonparametric mixture modeling.

Placing a covariate-dependent nonparametric prior:

Y|Gx ∼
∫

K (Y|m,θ)dGx(θ) =
∞∑
`=1

ω`(x)K (Y|m,θ`(x))
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Model structure illustration

The continuation-ratio logits structure offers a sequential mechanism

to allocate the ordinal response Y .
Generate H1 ∼ Bern(∆1),∆1 = ϕ(xTβ1),β1 ∼ N(µ1,Σ1)

Y = 1

H1 = 1

Generate H2 ∼ Bern(∆2),∆2 = ϕ(xTβ2),β2 ∼ N(µ2,Σ2)

Y = 2

H2 = 1

Generate H3 ∼ Bern(∆3),∆3 = ϕ(xTβ3),β3 ∼ N(µ3,Σ3)

Y = 3

H3 = 1

· · ·

H3 = 0

H2 = 0

H1 = 0

The stick-breaking weights are also determined by it.
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General modeling framework

The general logit stick-breaking process (LSBP) model for ordinal

regression:

Y|Gx ∼
∫

K (Y|m,θ)dGx(θ), Gx =
∞∑
`=1

ω`(x)δθ`(x)

The weights ω`(x) are generated by LSBP: ω1(x) = ϕ(xTγ1) and

ω`(x) = ϕ(xTγ`)
∏`−1

h=1(1− ϕ(xTγh)), ` = 2, 3, · · · ;

The atoms, θ`(x) = {θj`(x) : j = 1, · · · ,C − 1}, have linear

regression structure, θj`(x) = xTβj`
ind.∼ N(xTµj , x

TΣjx), and to be

independent across `;

Hyperprior: γ`
i.i.d.∼ N(γ0, Γ0) and µj |Σj

ind.∼ N(µj |µ0j ,Σj/κ0j),

Σj
ind.∼ IW (Σj |ν0j ,Λ−1

0j ).
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Simplified models

Common-weights: defining the weights through the stick-breaking

process that defines DP, we obtain the linear DDP model;

Gx =
∑∞

`=1 ω`δθ`(x);

η`
i.i.d.∼ Beta(1, α), ω1 = η1 and ω` = η`

∏`−1
h=1(1− η`), for

` = 2, 3, · · · ;
θ`(x) are defined as in the general model;

Common-atoms: we formulate the common-atoms LSBP model;

Gx =
∑∞

`=1 ω`(x)δθ` ;

θj`|µj , σ
2
j

ind.∼ N(µj , σ
2
j );

ω`(x) are determined as in the general model.
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Flexible ordinal regression relationships

Model properties

The general LSBP model allows flexible estimate of the probability

response curves.

1 Marginal regression relationships:

Pr(Y = j |Gx) =
∞∑
`=1

ω`(x) {ϕ(θj`(x))

j−1∏
k=1

[1− ϕ(θk`(x))]}

2 Conditional regression relationships:

Pr(Y = j |Y ≥ j ,Gx) =
∞∑
`=1

wj`(x) {ϕ(θj`(x))}

where wj`(x) =
ω`(x)

∏j−1
k=1 [1−ϕ(θk`(x))]∑∞

`=1 ω`(x)
∏j−1

k=1 [1−ϕ(θk`(x))]
.

Both have a weighted sum form with locally adjustable weights.
10/21



Model implementation

Prior specification:

Conjugate hyperprior, γ`
i.i.d.∼ N(γ0, Γ0), µj |Σj

ind.∼ N(µ0j ,Σj/κ0j),

Σj
ind.∼ IW (ν0j ,Λ

−1
0j ).

”Baseline choice” of hyperparameter: µ0j = γ0 = 0p,

Σj = Γ0 = 102Ip, and κ0j = ν0j = p + 2;

Under the baseline prior, E(Pr(Y = j |Gx)) ≡ 2−j , j = 1, · · · ,C − 1,

and E(Pr(Y = C |Gx)) ≡ 2−(C−1).

Posterior inference:

Blocked Gibbs sampler; Truncating Gx at a large enough level L and

introducing latent configuration variable Li for i = 1, · · · , n;

Pólya-Gamma augmentation; Introduce two groups of Pólya-Gamma

latent variables for the weights and atoms;

Same structure for the weights and atoms; Same sampling strategy;

All model parameters can be sampled via Gibbs sampling.
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Data Examples



Synthetic data examples

In both experiments, n pairs of ordinal response and covariate

(Yi , xi ) are generated, where xi
i.i.d.∼ Unif (xi | − 10, 10) such that

with the intercept, the covariate vector is xi = (1, xi )
T ;

First experiment: We generate n = 100 responses by first sampling

a latent continuous variable ỹi from normal distribution, then

discretizing ỹi with cut-off points to get the ordinal response Yi ;

Second experiment:

We generate data from Y ∼
∑3

k=1 ωk(x)K(Y|m,θk(x));

The true probability response curves have nonstandard shape.

Perform the experiment with 200 simulated data and with 800

simulated data.

12/21



First experiment result

Figure 1: Green solid lines: true response probabilities. Red dashed lines and

shadow area: nonparametric model; Blue dotted lines: probit regression model.
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Second experiment result

Figure 2: Green solid lines: the true response probabilities; Red line and

shadow area: the general LSBP model; Blue line and shadow area: the linear

DDP model. 14/21



How it works?

Figure 3: Box plots for posterior samples of the three largest mixing weights

(order decreases from left to the right) under the general model.

15/21



Real Data Application (Credit Ratings of U.S. Companies)

Standard and Poor’s (S&P) credit ratings for 921 U.S. firms;

For each firm, a credit rating on a seven-point ordinal scale is

available, along with five characteristics;

Combined the first two categories and the last two categories to

produce an ordinal response with five levels;

The covariates are: (1) book leverage X1, (2) earnings before

interest and taxes divided by total assets X2, (3) standardized

log-sales X3, (4) retained earnings divided by total assets X4, (5)

working capital divided by total assets X5;

Quantities of interest: the first and second order marginal probability

curves Pr(Y = j |Gx; xs) for j = 1, · · · , 5 and s ∈ {1, · · · , 5}.
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First order marginal probability curves

Figure 4: First order marginal probability curves. All five ordinal response

curves are displayed in a single panel for each covariate.
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Second order marginal probability surfaces

Figure 5: Second order marginal probability curves. The corresponding credit

rating decreases from left to right.
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Developmental toxicology data (DYME)

Data structure for Segment II designs (exposure after implantation):

Data at dose levels, xi , i = 1, · · · ,N, including a control group

(dose= 0);

ni pregnant laboratory animals (dams) at dose level xi ;
For the j-th dam at dose xi :

mij : number of implants;

Rij : number of resorptions and prenatal deaths (Rij ≤ mij );

yij : number of live pups with a malformation.

Focus on the dose-response curves on the clustered categorical

endpoints, embryolethality Rij , fetal malformation for live pups yij ,

and combined negative outcomes among implants Rij + yij .
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Estimation of dose-response curves

Figure 6: DYME data. The coordinates of the circle are the dose level and the

proportion of the specific endpoint: non-viable fetuses among implants (left

panel); malformations among live pups (middle panel); combined negative

outcomes among implants (right panel).
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Concluding Remarks



Summary and Discussion

We propose a unified toolbox for ordinal regression by directly

modeling the discrete response distribution. The virtues of the

proposed models rely on the following key ingredients:

1 Continuation-ratio logits representation;
2 Pólya-Gamma data augmentation technique;
3 Logit stick-breaking process prior.

The principal advantages of the proposed models include their

modularity and extensibility:

1 Modularity: the models can be readily embedded in a more complex

framework;
2 Extensibility: there are numerous possible extensions of the proposed

models. For example, replacing the binomial distribution in the

mixing kernel with logistic-normal-binomial distributions to allow

more overdispersion.
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MANY THANKS!
I am happy to answer any questions.

Jizhou Kang and Athanasios Kottas (2022),

”Structured mixture of continuation-ratio

logits models for ordinal regression”,

submitted, arXiv: 1234.56789.

c© Jizhou Kang (jkang37@ucsc.edu)
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