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Introduction

Ordinal responses are widely encountered in many fields, including econometrics

and the biomedical and social sciences, typically accompanied by covariate infor-

ma on. A univariate ordinal response Y with C categories can be encoded as a

C−dimensional binary vector Y. The modeling challenge for the ordinal regres-

sion problem involves capturing general regression rela onships in the response

probabili es (referred as the probability response curves), while appropriately ac-

coun ng for the ordinal nature of the response distribu on.

Figure 1. Illustra on of data structure.

Traditional Approach

Tradi onally, the ordinal regression problem is approached by trea ng the ordi-

nal responses as a discre zed version of latent con nuous responses, which are

usually assumed to be normally distributed, resul ng in popular ordinal probit

models.

Figure 2. Illustra on of probit regression.

The tradi onal approach is limited in the following ways:

Pr(Y = 1|x) and Pr(Y = C|x) are monotonically increasing or decreasing as a

func on of covariate x, and they must have the opposite type of

monotonicity;

The direc on of monotonicity changes exactly once in moving from category

1 to C (referred to as the single crossing property);

The rela ve effect of one covariate to another is the same for every ordinal

level and any covariate value.

Our Approach

We directly model the discrete distribu on of the ordinal responses, using

the con nua on-ra o logits representa on of mul nomial distribu on.

Y ∼ Mult(Y|m, π1, · · · , πC) ⇐⇒
Y ∼ Bin(Y1|m1, ϕ(θ1)) · · · Bin(YC−1|mC−1, ϕ(θC−1)) = K(Y|m, θ)

We generalize this parametric model via Bayesian nonparametric modeling.

Placing a covariate-dependent nonparametric prior.

Y|Gx ∼
∫

K(Y|m, θ)dGx(θ) =
∞∑

`=1
ω`(x)K(Y|m, θ`(x))

Model Properties

The con nua on-ra o logits structure offers a sequen al mechanism to allocate

the ordinal response Y .

Generate H1 ∼ Bern(∆1), ∆1 = ϕ(xTβ1), β1 ∼ N(µ1, Σ1)

Y = 1
H1 = 1

Generate H2 ∼ Bern(∆2), ∆2 = ϕ(xTβ2), β2 ∼ N(µ2, Σ2)

Y = 2
H2 = 1

Generate H3 ∼ Bern(∆3), ∆3 = ϕ(xTβ3), β3 ∼ N(µ3, Σ3)

Y = 3
H3 = 1

· · ·
H3 = 0

H2 = 0

H1 = 0

It can also be viewed as a process that determines the s ck-breaking weights.

The symmetric structure in the weights and the atoms of the induced mixture

model leads to the following benefits:

1. Flexible: allow general forms for ordinal response distribu on and ordinal

regression rela onship.

2. Easy: clear prior specifica on strategy, efficient posterior inference algorithm,

and easy to work with expressions for quan es of interest.

Simulation Study

First experiment

In the first experiment, we check on poten al overfi ng of the model. The true

probability responses curves, given in green solid lines, have standard shape. The

model es mates capture the truth, even though it is substan ally more complex

than the data genera ng mechanism.

Second experiment

In the second experiment, we seek to highlight the model’s capacity in captur-

ing nonstandard shapes of probability response curves (green solid lines). The

red dashed lines and shadow area provide the point and interval es mate of our

proposed model. The blue dashed lines and shadow area are the es mate from a

compe ngmethod. Contras ng the performance highlights the prac cal u lity of

our models in effec ve es ma on of non-standard probability response curves.

Real Data Examples

Credit ra ngs of U.S. firms

The dataset contains Standard and Poors (S&P) credit ra ngs for 921 U.S. firms.

For each firm, a credit ra ng on a five-point ordinal scale is available, along with

five characteris cs. We are interested in es ma ng the first-order marginal prob-

ability curves and the second-order marginal probability surfaces.

Figure 3. First-order marginal probability curves.

Figure 4. Second-order marginal probability surfaces. The corresponding credit ra ng decreases from le to right.

Developmental toxicity study (DYME)

Segment II designs data of an organic solvent, diethylene glycol dimethyl ether

(DYME). At dose level xi, i = 1, · · · , N , ni pregnant laboratory animals (dams)

exposed to the toxin at level xi. For the jth dam at dose xi, the experiment record

(i) mij: number of implants; (ii) Rij: number of resorp ons and prenatal deaths; (iii)

yij: number of live pups with a malforma on. Researchers are interested in three

dose-response rela onships: (i) probability of embryolethality: Pr(R∗ = 1|Gx); (ii)
probability of malforma on: Pr(Y ∗ = 1|R∗ = 0, Gx) (iii) combined risk func on

Pr(R∗ = 1 orY ∗ = 1|Gx).

Figure 5. Posterior point and 95% interval es mate of three dose-response curves. The circles are the original data.

Conclusion and Future Work

We proposed a modeling framework for ordinal regression that achieves a good

balance between model flexibility and implementa on difficulty. It has at least

the following two possible direc ons for future extensions.

1. Scalability of the algorithm: for large amount of data with moderate to large

number of possible categories.

2. Extension to longitudinal studies: for individuals with ordinal responses that

measured repeatedly over me.

We are interested in poten al collabora on opportuni es. Please contact me

if you have suitable applica ons/datasets.
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